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           Abstract

The Helmholtz machine provides what may be the best existing model for how the mammalian
brain recognizes patterns. Based on the observation that the “wake-sleep” algorithm for training a
Helmholtz machine is similar to the problem of finding the potential for a multi-channel
Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse
scattering methods can serve as a model for how the mammalian brain learns to extract essential
information from sensory data. In particular, inverse scattering theory provides a conceptual
framework for imagining how one might use EEG and MEG observations of brain-waves together
with sensory feedback to improve human learning and pattern recognition. Longer term,
implementation of inverse scattering algorithms on a digital or optical computer could be a step
towards mimicking the seamless information fusion of the mammalian brain.
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1. Introduction

It has been understood for some time that pattern recognition systems are in essence machines
that utilize either preconceived probability distributions or empirically determined posterior
probabilities to classify patterns [1]. In the ideal case where the a priori probability distribution
p(a) for the occurrence of various classes a  of feature vectors and probability densities p(x|a) for
the distribution of data sets x within each class are known, then the best possible classification
procedure would be to simply choose the class a for which the posterior probability

                            P(a | x) =
p(a)p(x | a )

p(b)p(x | b )
b

Â
 (1)

is largest. Unfortunately in the real world one is typically faced with the situation that neither the
class probabilities p(a) nor class densities p(x|a) are precisely known, so that one must rely on
empirical data to estimate the conditional probabilities P(a |x) needed to classify data sets. In
practice this means that one must adopt a parametric model for the class probabilities and
densities, and then use empirical data to fix the parameters q of the probability model. Once values
for the model parameters have been fixed, then input patterns can be classified by substituting the
values for the probabilities p(a; q) and p(x|a; q) into equation (1), and then choosing the class
a which maximizes the conditional probability P(a|x) .

Unfortunately determining values for the model parameters from empirical data is itself a
computationally intractable problem. This means that in practice one is usually limited to using
models of relatively modest complexity, and consequently one is always faced with the issue of
choosing the best possible values for the model parameters. One popular way of measuring how
good a particular set of model parameters is at reproducing the observed data, known as the
maximum likelihood (ML) estimator [2], can be motivated by noting that the formula for the
posterior probability given in equation (1) can be formally interpreted as the canonical Boltzmann
distribution for the population of energy levels of a physical system in equilibrium with a heat
bath. In particular if one defines the "energy" of a classification a to be
 

               Ea = - log p(a)p(x | a )                          (2)



then the posterior probability introduced in (1) can be formally expressed in the form

             P(a | x) =
e- Ea

e- Ea

a
Â

              (3)

where the energies are those defined in equation (2). If we imagine that the “energy levels” Ea

defined in equation (2) define a fictitious physical system whose levels are populated according to
the canonical Boltzmann distribution (3), then the thermodynamic free energy of this system will
be given by

          F (x) = {Ea
a
Â P(a ) - (-P(a )log P(a ))} ,   (4)

where  we have used P(a)  as shorthand notation for the canonical distribution (3). If instead of
the true probability distributions p(a ) and p(x|a) one uses model probabilities p(a; q ) and
p(x|a; q) to calculate a tentative probability distribution Pq (a )  for different classifications of an
input data set x, then equation (3) will no longer necessarily be satisfied and the free energy
calculated from equation (4) will in general differ from the true free energy. In particular we would
have that

            F (x) = F (x, q) - Pq (a )log[Pq (a ) / P(a)]
a
Â               (5)

where F (x,q) is the free energy calculated using the estimated distribution Pq (a ) .The quantity

Pq (a )log[Pq (a ) / P(a)]
a
Â  in the second term in equation (5) is always positive and measures

of the difference in bits between the model distribution Pq (a ) and the true distribution P(a) . This
distance measure, known as the Kullback- Leibler divergence, is the basis for maximum likelihood
estimates. It should be noted that the estimated free energy F(x, q ) is always greater than the true
equilibrium free energy F(x), so that a good choice for the estimated probability distribution is one
that which minimizes the estimated free energy F(x, q ).

In the following we will focus on a particular method for constructing model probability
distributions that minimize the estimated free energy known as the Helmholtz machine. The name
is inspired by Helmholtz’s suggestion that the mammalian brain functions as a statistical inference
engine. In the work of Hinton et al [3,4] a “wake-sleep” training algorithm was used to fix the
parameters of the Helmholtz machine. Our new suggestion, motivated by the similarity between
the wake-sleep algorithm and the problem of determining the potential for a multi-channel
Schrodinger equation from scattering data, is that inverse scattering techniques might be used both
to improve human cognition and also provide new computational strategies for information fusion.

      2. Bayesian networks and Helmholtz machines

In a Bayesian network [5] causal relationships between pattern features are represented by a
probability distribution for the states of the nodes in a layered network, which is a product of
conditional probabilities for each unit given the values of the units which proceed it in some
ordering. Many types of Bayesian networks are possible, but typically such networks have a tree-
like structure and the conditional probabilities have the Markov property; i.e. the random variables
at nodes not connected by a branch are conditionally independent given those variables which are
so connected. It is the Markov structure of Bayesian decision trees, which provides an entry for
utilizing the formalism of quantum mechanics to solve pattern recognition problems.        

One of the main practical problems with using Bayesian networks to search for patterns is
that, given a decision tree and associated set of conditional probabilities which constitute a model
for the world, finding explanations for input data will typically involve using Markov chain Monte



Carlo methods to invert the world model. Because of the need for repetitive sampling, this cannot
in general be done in real time. Remarkably, though, the Helmholtz machine introduced by Hinton
et.al. [3,4] offers the promise of alleviating these problems.

The Helmholtz machine is a layered network of units whose activation levels are quantized to
be either 0 or 1. Some of the binary units represent environmental input data, while the remaining
hidden units represent possible explanations for the input data. All information concerning
conditional probabilities is contained in the values of the connection strengthswij  between nodes;

indeed it is possible that these weights play much the same role in the Helmholtz machine as the
synaptic connections in the cerebral cortex. In the scheme of Hinton et al the activation of the ith

hidden unit in the n+1 layer is chosen stochastically in accordance with the probability pj(x)
given by
                                 p(ai (n+1) | a (n)) = s[b(1-2ai (n+1)) wij

j
Â aj ],                           (6)

where s(x) = 1/[1+exp(-x)]. The vector a(n) = {ai (n)} in equation (6) denotes the set of activation
levels at layer n of the network. If one assumes that the activities of the binary units within a given
layer are assumed to be independent, then the probability of a particular explanation a  ={a(n),
n>1} for the input data will be given by the product :

                                       Q(a ) = 
n>1
’ [ p(aj

j
’ ]a j [1 - p(aj )]

1-a j                                (7)

All of the information concerning the structure of the external world that is needed to explain a
given set of input patterns is encoded into the connection weights wij , and the main obstacle to

implementing the just described recognition network is determining the values of these parameters.
In the “wake-sleep” training scheme of Hinton et. al. the the connection weights and

biases of a separate “top-down” network are used offline to generate a “true” posterior probability
distribution Pq (a ) . The connection strengths wij  which are used in the recognition network to

explain input patterns are determined simultaneously with the parameters of the top-down model
by using gradient descent methods to minimize the estimated free energy function F(x,Q). The
“bottom-up” conditioning of virtually every kind of neural network that has be used to interpret
practical sensor data is not only be computationally tedious, but also problematic from the point of
view as to whether the network is really giving the correct weightings to various possible
explanations. The introduction of a separate “top-down” network for this purpose by Hinton et. al.
appears to be a significant step towards both reducing the computational complexity of pattern
recognition; particularly when there are many alternative explanations for the input data.

                       3. Schrodinger representation for a Helmholtz machine

As noted above the transition probabilities which describe the evolution from one layer to the
next in either the bottom-up or top-down networks of a Helmholtz machine satisfy the identities
required for Markov probabilities. Although Markov processes are usually thought of as
progressing forward in time, any Markov chain can be run in reverse and there is in fact a time
symmetric or “Schrodinger” representation for Markov chains [6]. This time symmetric
representation allows one to express the transition probabilities for either the forward or time
reversed Markov chain in terms of real quantities p+ and p-  which replace the amplitude A and
phase f of a Schrodinger wavefunction as follows:

            p+ ≡ A exp(f) , p- ≡ A exp(-f)                                             (8)

The forward and backward  Markov transition probabilities can then be expressed in the form:

                     P↑[b(n+1) | a(n)] = [p+(a, n)]-1G (a, n ; b, n+1) p+(b, n+1), 
                  (9)

   PØ[b(n+1) | a(n)] = p- (a, n)G (a, n ; b, n+1) [p- (b, n+1)]-1,



where G is the Green’s function for the multi-channel imaginary time Schrodinger equation.
In principle equations (9) could be used to simulate the dynamics of any quantum system;

although in practice one would probably be limited to quantum systems for which the dimension
of Hilbert space is not too large. However, for the purposes of trying to model how the
mammalian brain works, it is more useful to think of Eq’s (9) as allowing one to use the
formalism of quantum mechanics to model the way a Helmholtz machine recognizes patterns. In
the case where each node of the Markov network has just two states (viz “spin up” or “spin
down”), the network can be identified with Hinton’s original version of the  Helmholtz machine
[3,4], and we see that the Schrodinger representation, Eq’s (9), provides a way of representing the
connection strengths of the Helmholtz machine in terms of quantum mechanical transition
amplitudes. Furthermore, we can now view the problem of determining the connection strengths in
a Helmholtz machine as equivalent to the “inverse problem” of determining the potential for a
multi-channel Schrodinger equation from knowledge of initial and final wavefunctions for the
quantum system. This latter inversion problem has been intensively studied in the particular case
of 3-dimensional scattering of waves from a non-spherical potential [7,8], and also occurs in the
context of adaptive optics [9]. Thus there is an existing body of mathematical knowledge
concerning the inversion of scattering data that one can take over for the purpose of modeling how
the mammalian brain extracts information from sensory inputs.

4. Adaptive optics model

The discussion of section 3 suggests that inverse scattering techniques applicable to multi-
channel quantum mechanics may lead to new approaches to pattern recognition. As it happens the
inversion problem for multi-channel quantum mechanics has previously made an appearance in an
engineering problem that may provide valuable insight into how the mammalian brain fuses
different kinds of sensory data. This problem is adaptive optics in the presence of photon noise.
The connection of this problem with the inversion problem for multi-channel quantum mechanics
was first pointed out by Freeman Dyson [9].   
           The system considered by Dyson is a deformable reflecting mirror, where the shape of the
surface  is adjusted so as to just compensate for small shifts j(s,t) in the optical path length of
light rays incident on the surface at various locations s . Dyson proceeds by writing down
equations describing the interplay between small deformations in the shape of a surface and
changes in the intensity of light on an array of sensors which measures the shape of the wave front.
The first equation supposes that we have a control system that adjusts the displacement d(s,t) of
the surface with sufficient accuracy  so that the intensity of light on the sensor array at time t and
position x is a linear function of the error e(s,t) ≡ d(s,t) + j(s,t):

                   I(x,t)  = I0(x) +  d2s
SÚ  B(x,s)e(s,t),                                       (10)          

where I(x,t) is the recorded intensity of light on the sensor array at time t and position x, and I0(x)
is the recorded intensity on the sensor array when the surface S is illuminated in the absence of
imposed variations in phase with respect to position or time. The second equation relates the
deformation d(s,t) to the intensity of light on the phase measuring array:

                      d(s ,t) = ÚdW d
-•

t

Ú  t’ A(s,x,t’) I(x,t),                                      (11)

where the integral over dW means sampling the light intensity at a sufficiently large number of
points on the sensor array as is required to determine the parameters t1, t2,... which define the
shape of the surface. When photon noise is neglected, equations (10) and (11) have the classical
solution (in matrix shorthand)

                                                e = [1- AB]-1 f    .                                                       (12)

Eq. (12) shows that when the negative feedback is sufficiently strong the error e(s,t) can be reduced
to a small fraction of the change in optical path length. That is, in the absence of noise one can
cause the position of the surface at each point to just track the change in optical path length.



      What is perhaps most remarkable about the adaptive optics problem, though, is that when
photon noise is taken into account the problem of adjusting the shape of the surface to compensate
for changes in the optical path of the illuminating beam becomes equivalent to solving the multi-
channel Schrodinger equation. This situation is qualitatively different from the classical case
because the negative feedback in Eq. (11) will amplify the photon noise. It is not hard to show that
in the presence of noise the two point correlation function for the path length errors e(s,t) averaged
over a time long compared to the characteristic time for photon number fluctuations has the form
(again in matrix shorthand):

                              < e1 e2> = [1-A1 B1]
-1 [1- A2 B2]

-1 {U12 + A1 A2 d12 I0},                        (13)

where U12 is the average <j1j2 > over the same time and d12 = d(s1 - s2) d (t1 - t2). In contrast with
the classical case, an optimal choice for the feedback matrix A is somewhat arbitrary. Dyson takes
as the criterion for optimizing the feedback system that a quadratic function of the feedback errors
should be minimized, in which case the optimal feedback matrix A(s,x,t’) can be expressed in the
form: A = KBT I0

-1  where the matrix K(s1 , s2 , t1 - t2) satisfies

                                           K + KT  + K(BT I0
-1B)KT  + U = 0  .                                   (14)

Eq. (14) is the central equation of inverse scattering theory for the Schrodinger equation [8].
In the context of modeling the mammalian brain the labels representing positions on the

deformable mirror would denote specific sets of synaptic connections within the cerebral cortex
associated with recognizing specific features of the sensory inputs. The role of surface deformations
of a mirror would be played by changes in the strengths in these connections induced by sensory
habituation. The plasticity of the human brain to sensory habituation is a well known
phenomenon, and could provide a practical basis for using inverse scattering algorithms to model
human pattern recognition.    

       5. Improving human learning and cognition

The idea here is to use magnetoencephalographic (MEG) and/or electroencephalographic
(EEG) observations of brain-waves to extract the phase f  as defined in Eq. (8). This phase
represents the difference between an explanation chosen from the ensemble of possible explanations
that have been stored in memory, and what is actually observed. Thinking of this difference as a
“phase” has the advantage that the adaptive optics analogy provides an easily visualized conceptual
framework for information processing that might permit us to glimpse for the first time how the
mammalian brain seemingly effortlessly extracts subtle patterns from multiple sensor inputs. We
note in passing that our  quantum mechanics related  “phase” is a purely formal construct, and that
we are not suggesting that real holographic-like interference plays a role in the human brain, as has
been suggested [10].  

Actually brain-wave patterns are rather  noisy, but previous experience with neural
network based algorithms for extracting the phase for different optical paths from measurements of
the phase across a transverse surface in an optical system [11] could be very helpful. In adaptive
optics systems the phase obtained by “smoothing” interferometric measurements of the phase
across a 2-dimensional array is used to determine the surface displacements of a deformable mirror
which will cancel out the distortions in the image resulting from variations in optical path length
due to atmospheric turbulence. Of course, in the case of the human brain, distortions in EEG and
MEG signals may arise not just from noise, but also because the meaning of the sensory inputs
may be ambiguous. The development of methods for extracting the phase f  from brain-waves, and
then comparing this phase with that expected for likely interpretations of the sensory inputs would
allow one to monitor the progress of human pattern recognition and assess the efficiency of various
teaching techniques for improving cognition.

One key element to achieving success with such a program is to obtain significant MEG
or EEG data in real time without relying on averaging over many observations as is typically done
in the field. This is an important step because when averaging over many epochs, the brain will
typically adapt to the signals. As a result, in order to study the dynamic of the brain’s response,
real time signal extraction is essential. Current standard practice is to repeat the stimulation 100 to
300 times to obtain 100 to 300 epochs of brainwave patterns followed by averaging to reduce
noise. We have successfully designed a new unsupervised signal extraction algorithm for such



purpose. Preliminary results are encouraging. Figure 1 shows the epoch-by-epoch “cleanup” MEG
signal adaptation of the brain as indicated by the decreasing response of the valley found at ~250
msec based on the outputs from a SQUID device to an audio stimulation. Different epochs were
offset along the y-axis to show the adaptation of the brain. As a comparison, we also show the
averaging result of the 120 epochs of raw MEG signals at the top. A100 fold decrease in
experiment time has been achieved and this success is important for the practical implementation
of our ideas.
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   Figure 1 – Real time extraction of MEG data epoch-by-epoch

With “clean” EEG and MEG signals in hand one can attempt to extract the phase differences D f
between the brain-wave signals associated with sensory inputs and the brain-wave correlates for
various explanations of the sensory data. It is known, for example, that the meanings of words or
phrases have brain-wave correlates [12], and so these expected responses to audio inputs could be
compared with the observed brain-wave response. One could then proceed to monitor changes in
the phase difference in order to assess the efficacy of various methods for teaching word recognition
such as phonological priming [13].

                                             6. Information Fusion

In our proposal to improve human cognition via the application of inverse scattering
theory the human brain itself was the “Helmholtz machine”. However, one could also contemplate
implementing a Helmholtz machine-like model for the mammalian brain directly on a massively
parallel computer. For example, one might consider using the independent processors in a
massively parallel digital computer as the nodes of a Helmholtz machine network; with time
evolution of the nodes representing the passing of information from one layer to the network.
During both the “wake” and “sleep” modes of operation each node could update itself according to
Eq. (6) using information about the current state of the nodes that is stored in a shared memory. Of
course, in pursuing such a program one is faced  with the usual training problem afflicting all
artificial neural networks; namely,  the determination of the connection strengths wij  from training

data is computationally tedious when there are many input channels.
As an alternative one might consider using inversion techniques that have been developed

for the 3-dimensional wave equation (see e.g. ref. 8). One still needs to develop feedback
algorithms for recognizing reference images, but a considerable body of knowledge regarding the
inversion problem for the 3-dimensional wave equation could be brought to bear that may make
the computational problem of representing the plasticity of the cerebral  cortex more tractable.  An
additional intriguing possibility would be to use optical computing directly. Representing



information via the amplitude and phase of coherent light would make the fusion of different kinds
of information seem “seamless”; which is, of course, one of the things that makes the mammalian
brain seem so miraculous. Eventually we would like to investigate the relationship between
information fusion in Bayesian networks and brain activities bound together by the gamma
oscillation [14]. In these cases  we expect that an optical representation of sensory feedback
affecting  multiple sensory modalities will provide new insights into conscious awareness.

                       7. Summary

We have proposed here a new approach to pattern recognition which is partly inspired by our
current understanding of how the mammalian brain recognizes patterns. This approach is based on
inverse scattering techniques as used, for example, in adaptive optics systems. We hope to apply
our technique to improve real world human pattern recognition and to assess the efficacy of various
teaching methods by using neural network techniques to “clean up” observed EEG and MEG
measurements, and then compare these preprocessed  signals with expected brain-wave correlates.
In the guise of  defining a potential for a Schrodinger equation this work will bear directly on the
fundamental question as to how well Bayesian models of conditional probability explain the
architecture and dynamics of the cerebral  cortex. For example, the success or failing of inverse
scattering techniques should provide considerable insight into how well Bayesian models can
represent  the effects of training on perception.
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